Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1279: 341797, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827690

RESUMO

The construction of highly sensitive detection methods for hydroquinone (HQ) in environment and cosmetics is of great significance for environmental protection and human health. In this work, a novel detection method for HQ was successfully developed by constructing a metal-organic framework mimic enzyme colorimetric sensor (Mn/Fe-MOF@Pd1.0) with excellent peroxidase-like activity, which was synthesized by doping manganese ions into Fe-MOF by introducing bimetallic active centers, thereby improving the peroxidase-like activity of Fe-MOF, and the acid resistance and stability of Mn/Fe-MOF were improved by supporting palladium (Pd NPs). It is proven that Mn/Fe-MOF@Pd1.0 promoted the decomposition of hydrogen peroxide (H2O2) to generate active species, therefore, oxidized chromogenic substrate discoloration. On this basis, the detection of HQ based on the Mn/Fe-MOF@Pd1.0 colorimetric sensor was constructed, in which the limit of detection (LOD) was 0.09 µM in the linear range of 0.3-30 µM. Furthermore, Mn/Fe-MOF@Pd1.0 was successfully used for detecting HQ in hydroquinone whitening cream and actual water samples. The successful synthesis of Mn/Fe-MOF@Pd1.0 may provide new insights for further study of the enzyme-like activity of metal-organic framework composites, and the constructed facile and sensitive sensor system could broaden the application prospects of HQ detection.

2.
Cancer Control ; 29: 10732748221143388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36461936

RESUMO

BACKGROUND: Because of multiple competing death outcomes and time-varying coefficients, using a Cox regression model to analyze the prognostic factors of low-grade gliomas (LGG) may lead to a possible bias. Therefore, we adopted time-dependent competing risk models to obtain accurate prognostic factors for LGG. METHODS: In this retrospective cohort study, data were extracted from patients enrolled in the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2018. Univariate analysis was performed using the cumulative incidence function (CIF) and Kaplan-Meier (KM) function. Time-dependent competing risk and Cox regression models were used in the multivariable analysis. RESULTS: A total of 2581 patients were diagnosed with low-grade glioma, among whom 889 died from low-grade glioma, 114 died from other causes, and the rest were alive. The time-dependent competing risk models indicated that age, sex, marital status, primary tumor site, histological type, tumor diameter, surgery, and year of diagnosis were significantly associated with low-grade glioma-specific death, and the relative effect of age, tumor diameter, surgery, oligodendroglioma, and mixed glioma on low-grade glioma-specific death changed over time. Compared with the competing risk models, the Cox regression model misestimated the hazard ratio (HR) of covariates on the outcome and even produced false-negative results. CONCLUSIONS: The time-dependent competing risk models were better than the Cox regression model for evaluating the impact of covariates on low-grade glioma-specific mortality in the presence of competing risks and time-varying coefficients. The models identified the prognostic factors of LGG more accurately than the Cox regression model.


Assuntos
Glioma , Projetos de Pesquisa , Humanos , Adulto , Prognóstico , Estudos Retrospectivos , Bases de Dados Factuais , Glioma/epidemiologia
3.
Biosens Bioelectron ; 210: 114294, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35462296

RESUMO

Single-atom catalysts with atomically dispersed M-Nx active sites have been widely used as nanozymes for colorimetric sensing due to their similar structure to natural enzymes, but they are still limited by their biological activity. Herein, controllable synthesis of B-doped Zn-N-C (ZnBNC) single-atom nanozymes (SAzymes) was designed and realized for the first time as a potent peroxidase mimetic. Based on the peroxidase-like activity of ZnBNC SAzymes, a novel colorimetric method was developed for the highly sensitive and selective detection of p-phenylenediamine (PPD) with a wide response range (0.3-10 µM) and a low detection limit (0.1 µM), which can be used as an alternative method for the detection of PPD in hair dyes and dyed hair samples.


Assuntos
Técnicas Biossensoriais , Colorimetria , Tinturas para Cabelo , Fenilenodiaminas , Boro , Tinturas para Cabelo/análise , Peroxidases , Fenilenodiaminas/análise , Zinco
4.
Front Neurol ; 13: 774654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359655

RESUMO

Background: We aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT). Methods: A retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results: After multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842-0.933) and 0.776 (95% CI: 0.681-0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful. Conclusions: The new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.

5.
Circ Res ; 130(6): 907-924, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35189704

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) is a leading cause of disability and mortality worldwide. Prediction of penumbra existence after AIS is crucial for making decision on reperfusion therapy. Yet a fast, inexpensive, simple, and noninvasive predictive biomarker for the poststroke penumbra with clinical translational potential is still lacking. We aim to investigate whether the CircOGDH (circular RNA derived from oxoglutarate dehydrogenase) is a potential biomarker for penumbra in patients with AIS and its role in ischemic neuronal damage. METHODS: CircOGDH was screened from penumbra of middle cerebral artery occlusion mice and was assessed in plasma of patients with AIS by quantitative polymerase chain reaction. Magnetic resonance imaging was used to examine the penumbra volumes. CircOGDH interacted with miR-5112 (microRNA-5112) in primary cortical neurons was detected by fluorescence in situ hybridization, RNA immunoprecipitation, and luciferase reporter assay. Adenovirus-mediated CircOGDH knockdown ameliorated neuronal apoptosis induced by COL4A4 (Gallus collagen, type IV, alpha IV) overexpression. Transmission electron microscope, nanoparticle tracking analysis, and Western blot were performed to confirm exosomes. RESULTS: CircOGDH expression was dramatically and selectively upregulated in the penumbra tissue of middle cerebral artery occlusion mice and in the plasma of 45 patients with AIS showing a 54-fold enhancement versus noncerebrovascular disease controls. Partial regression analysis revealed that CircOGDH expression was positively correlated with the size of penumbra in patients with AIS. Sequestering of miR-5112 by CircOGDH enhanced COL4A4 expression to elevate neuron damage. Additionally, knockdown of CircOGDH significantly enhanced neuronal cell viability under ischemic conditions. Furthermore, the expression of CircOGDH in brain tissue was closely related to that in the serum of middle cerebral artery occlusion mice. Finally, we found that CircOGDH was highly expressed in plasma exosomes of patients with AIS compared with those in noncerebrovascular disease individuals. CONCLUSIONS: These results demonstrate that CircOGDH is a potential therapeutic target for regulating ischemia neuronal viability, and is enriched in neuron-derived exosomes in the peripheral blood, exhibiting a predictive biomarker of penumbra in patients with AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , RNA Circular/genética , Acidente Vascular Cerebral , Animais , Biomarcadores , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Humanos , Hibridização in Situ Fluorescente , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Camundongos , MicroRNAs/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia
6.
RSC Adv ; 11(39): 24065-24071, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479004

RESUMO

Hydroquinone (HQ) is poorly degradable in the ecological environment and is highly toxic to human health even at a low concentration. The colorimetric method has the advantages of low cost and fast analysis, which provides the possibility for simple and rapid detection of HQ. In this work, a new colorimetric method has been developed for HQ detection based on a peroxidase-like catalyst, α-Fe2O3@CoNi. This sweetsop-like α-Fe2O3@CoNi catalyst enables H2O2 to produce hydroxyl (˙OH), leading to the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB. In the presence of HQ, the blue oxTMB is reduced to colorless, which allows for colorimetric detection of HQ in water samples. This method has been validated by detecting HQ in water samples with high selectivity, rapid response, broad detection range (0.50 to 30 µM), and low detection limit (0.16 µM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA